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Abstract

We derive an integral representation for the density function of positive stable distribution

with stability index 2−n, n ∈ N+. This result immediately reveals an elegant decomposition

for this distribution into simple inverse gamma distributions in a recursive structure. It also

leads to a simple procedure for exact simulation.
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1 Introduction

Lévy (1925) first introduced the family of stable distributions which offers a great alternative to

the Gaussian distributions. Tremendous applications of stable distributions and their various ex-

tensions in finance, economics and many other fields can be found in the literature, see Mandelbrot

(1963); Fama (1965); Samoradnitsky and Taqqu (1994); McCulloch (1996); Cont et al. (1997);

Uchaikin and Zolotarev (1999); Jondeau et al. (2007); Cizek et al. (2011).

In this note, we concentrate on an interesting special family, the stable distribution of stability

2−n for n ∈ N+:
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Definition 1.1 (Stable Distribution of Stability 2−n). Stable distribution of stability 2−n, denoted

by S (2−n, κ), is a one-sided positive stable distribution with the Laplace transform

E
h
e−uS(2

−n,κ)
i
= exp

�
−κu2−n

�
, u, κ ∈ R+, n ∈ N+, (1.1)

where 2−n ∈ (0, 1) is the stability index and κ is the scale parameter.

As the name "stable" implies in the stable distribution, stability index is the most crucial pa-

rameter, since this fundamentally determines its distributional property of stable laws (Borak et al.,

2011, p.23). It has been commonly recognised that, the density functions for general specifications

on the stability index are hard to be obtained analytically, and this poses the greatest challenge to

the further study of their distributional properties and statistical inference.

In the literature, Brown and Tukey (1946) andMitra (1981, 1982, 1983) obtained a very elegant

representation:

S(2−n, 1) D=

8><
>:
Y1, if n = 1,

Y1
�
Y2b

2
2

�2�
Y3b

2
3

�4
...
�
Ynb

2
n

�2n−1
, if n ≥ 2,

(1.2)

where

bi :=
1q

2 sec
�

1
2i
π
�
cos

�
1

2i+1π
� , i = 2, 3, ..., n,

and {Yi}i=1,2,...,n are i.i.d. random variables with Yi ∼ InvGamma
�
1
2 ,

1
2

�
, i.e. an inverse gamma

distribution with the shape parameter 1
2 and the rate parameter 1

2 . Whereas in this note, we pro-

vide some representations particularly for S (2−n, κ) of Definition 1.1, which imply very efficient

simulation algorithms.

2 Integral Representations and Distributional Decompositions

We derive a new multiple integral representation for the density function of S (2−n, κ) for any

n ∈ N+ as follows:

Theorem 2.1 (Multiple Integral Representation). For anyn ∈ N+, the density function ofS (2−n, κ)

can be expressed by

fS(2−n,κ) (xn) =

∞Z
0

...

∞Z
0

xn−1

2
È
πx3n

e−
x2n−1
4xn × ...× x1

2
È
πx32

e
−
x21
4x2

κ

2
È
πx31

e
− κ2

4x1 dx1dx2...dxn−1.

(2.1)
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Proof. In fact, for n = 1, S
�
1
2 , κ

�
is an inverse gamma distribution with the density

fS( 1
2
,κ)(x) =

κ

2
√
πx3

e−
κ2

4x . (2.2)

For n = 2, the Laplace transform of S
�
1
4 , κ

�
can be rewritten by

exp
�
−κu

1
4

�
= exp

�
−κ

È√
u
�

=

∞Z
0

e−
√
ux1 κ

2
È
πx31

exp

�
− κ2

4x1

�
dx1

=

∞Z
0

∞Z
0

e−ux2
x1

2
È
πx32

exp

�
− x21
4x2

�
κ

2
È
πx31

exp

�
− κ2

4x1

�
dx1dx2,

which means that the density of S
�
1
4 , κ

�
is

fS( 1
4
,κ)(x2) =

∞Z
0

x1

2
È
πx32

e
−
x21
4x2

κ

2
È
πx31

e
− κ2

4x1 dx1. (2.3)

Hence, (2.1) holds for n = 2. Let us assume that, this statement holds for any integer smaller than

an arbitrary integer j > 2, then, for any n = j + 1 in general, we have

E
h
e−uS(2

−(j+1),κ)
i

= exp
�
−κu2−(j+1)

�

= exp
�
−κ
√
uj
�

=

∞Z
0

e−u
2−jx1 κ

2
È
πx31

e
− κ2

4x1 dx1

=

∞Z
0

∞Z
0

e−uxjfS(2−(j+1),x1)(xj+1)
κ

2
È
πx31

e
− κ2

4x1 dx1dxj+1,

where

fS(2−(j+1),x1) (xj+1) =

∞Z
0

...

∞Z
0

xj

2
È
πx2j+1

e
−

x2
j

4xj+1 × ...× x1

2
È
πx22

e
−
x21
4x2 dx2...dxj .

Hence, fS(2−(j+1),x1)(x1) immediately follows (2.1) with n = j + 1. Thus, the associated proof

can be completed conventionally by the mathematical induction.

Remark 2.1. Based on Theorem 2.1, we can calculate the density functions of S (2−n, κ) using

numerical integration. For example, the density functions of S
�
1
4 , κ

�
as specified in (2.3) when

x2 ∈ [0, 5] for κ = 0.5, 1, 2, 4 are plotted in Figure 1, respectively.

3



0 1 2 3 4 5
0

2

4

6

8

10

12

14

16

18

 

 

0 1 2 3 4 5
0

1

2

3

4

5

6

 

 

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x
2

 

 

0 1 2 3 4 5
0

0.005

0.01

0.015

0.02

0.025

x
2

 

 

Density of S(1/4,4)

Density of S(1/4,1/2) Density of S(1/4,1)

Density of S(1/4,2)

Figure 1: The density functions of S
�
1
4
, κ
�
for κ = 0.5, 1, 2, 4, respectively

Moreover, the multiple integral representation for the density function in Theorem 2.1 reveals

an elegant distributional decomposition for S (2−n, κ) into simple inverse gamma distributions in

a recursive structure as below:

Theorem 2.2 (Distributional Decomposition). S (2−n, κ) is equal in distribution to a random vari-

able Xn satisfying

X1 ∼ InvGamma
�
1

2
,
κ2

4

�
, Xi | Xi+1 = xi+1 ∼ InvGamma

�
1

2
,
x2i+1

4

�
, (2.4)

for i = 1, ..., n− 1 and n = 2, 3, ....

Proof. Since (2.1) in Theorem 2.1 is the density of Xn, we have S (2−n, κ) D=Xn for any n ∈

N+.

Remark 2.2. The elegant distributional decomposition of Theorem 2.2 can be numerically veri-

fied by Monte Carlo simulation, since itself implies a simple procedure in a backward recursive

structure for exactly sampling S (2−n, κ). For example, the comparison between the true values

(1.1) and the associated simulation-based estimations (via Theorem 2.2) for the Laplace trans-

form E
h
e−uS(2

−n,κ)
i
with u = 0.25 and κ = 0.1, 0.2, ..., 1.0 based on 100, 000 replications for
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Figure 2: Comparison between the true values (1.1) and the associated simulation-based estimations (via
Theorem 2.2) for the Laplace transform E

�
e−uS(2

−n,κ)
�
with u = 0.25 and κ = 0.1, 0.2, ..., 1.0

based on 100, 000 replications for n = 2, 3, 4, 5, respectively

n = 2, 3, 4, 5 is plotted in Figure 2, respectively, and the numerical results are reported in Table

1. They are all conducted on a desktop with an Intel Core i7-6700 CPU@3.40GHz processor,

24.00GB RAM,Windows 10 Professional and 64-bit Operating System. The algorithms are coded

and performed in MatLab (R2012a), and the computation time is measured by the elapsed CPU

time in seconds. The associated errors with respect to the true values calculated by (1.1) are re-

ported by three standard measures:

1. Error = estimated value− true value;

2. Relative error (error %) = estimated value − true value
true value ;

3. SE is the standard error of simulation output.
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Table 1: Comparison between the true values (1.1) and the associated simulation-based estimations (via The-
orem 2.2) for the Laplace transformE

�
e−uS(2

−n,κ)
�
with u = 0.25 and κ = 0.1, 0.2, ..., 1.0 based

on 100, 000 replications for n = 2, 3, 4, 5, respectively; the associated plots are provided in Figure
2

κ True Simulation Error Error% SE True Simulation Error Error% SE
n = 2 n = 3
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