Ruin by dynamic contagion claims

Angelos Dassios*, Hongbiao Zhao

Department of Statistics, London School of Economics, Houghton Street, London WC2A 2AE, United Kingdom

ARTICLE INFO

Article history:
Received August 2011
Received in revised form
March 2012
Accepted 16 March 2012

JEL classification:
C10
MSC:
primary 91B30
secondary 60J25
60J75
60J85

Keywords:
Dynamic contagion process
Ruin probability
Generalised Lundberg’s fundamental equation
Cramér–Lundberg approximation
Change of measure
Martingale method

ABSTRACT

In this paper, we consider a risk process with the arrival of claims modelled by a dynamic contagion process, a generalisation of the Cox process and Hawkes process introduced by Dassios and Zhao (2011). We derive results for the infinite horizon model that are generalisations of the Cramér–Lundberg approximation, Lundberg’s fundamental equation, some asymptotics as well as bounds for the probability of ruin. Special attention is given to the case of exponential jumps and a numerical example is provided.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In the classical Cramér–Lundberg risk model, the arrival of claims is modelled by a Poisson process. As substantially discussed in the literature, this model is often not realistic in practice and hence a variety of extensions have been studied. Many researchers, such as Björk and Grandell (1988) and Embrechts et al. (1993) had already suggested using the Cox process to model the arrival of claims, (see also the book by Grandel (1991)). Schmidli (1996) investigated the case for a Cox process with a piecewise constant intensity. More recently, Albrecher and Asmussen (2006) discussed a Cox process with shot noise intensity. On the other hand, only a few researchers have proposed risk models using self-excited processes, due to the observation of the clustering arrival of claims in reality, a similar pattern in the credit risk from the financial market, particularly during the current economic crisis. Stabile and Torrisi (2010) looked at the ruin problem in a model using the Hawkes process, a self-excited point process introduced by Hawkes (1971).

To capture the clustering phenomenon as well as some common external factors involved for the arrival of claims within one single consistent framework, in this paper, we extend further to use the dynamic contagion process introduced by Dassios and Zhao (2011), a generalisation of the externally excited Cox process with shot noise intensity (with exponential decay) and the self-excited Hawkes process (with exponential decay). It could be particularly useful for modelling the dependence structure of the underlying arriving events with dynamic contagion impact from both endogenous and exogenous factors. In this paper, we try to generalise results obtained for the classical model.

We organise our paper as follows. Section 2 provides distributional results we will use, mainly developed in Dassios and Zhao (2011). Section 3 formulates the problem. It also provides a numerical example and some asymptotics that are based on simulations. In Section 4, we use the martingale method and generalise Lundberg’s fundamental equation. We derive bounds for the ruin probability in Section 5. In Section 6, we derive all results via a change of measure. This makes simulations more efficient as ruin is certain under the new measure. Section 7 concentrates on exponentially distributed claims. Our results are illustrated by a numerical example.

2. Dynamic contagion process

The dynamic contagion process includes both the self-excited jumps (which are distributed according to the branching structure
of a Hawkes process with exponential fertility rate) and the externally excited jumps (which are distributed according to a particular shot noise Cox process). We directly use the definition of the dynamic contagion process from Dassios and Zhao (2011).

Definition 2.1 (Dynamic Contagion Process). The dynamic contagion process is a cluster point process \(\mathbb{D} \) on \(\mathbb{R}_+ \). The number of points in the time interval \((0, t]\) is defined by \(N_t = N_{[0,t]} \). The cluster centers of \(\mathbb{D} \) are the particular points called immigrants, and the other points are called offspring. They have the following structure:

(a) The immigrants are distributed according to a Cox process \(A \) with points \(\{D_m\}_{m=1,2,\ldots} \in (0, \infty) \) and shot noise stochastic intensity process

\[
a + (\lambda_0 - a) e^{-\delta t} + \sum_{t \leq t} Y_i^{(1)} e^{-\delta(t - T_i^{(1)})} \mathbb{1}(T_i^{(1)} \leq t),
\]

where

- \(a \geq 0 \) is the constant reversion level;
- \(\lambda_0 > 0 \) is a constant as the initial value of the stochastic intensity process (defined later by (1));
- \(\delta > 0 \) is the constant rate of exponential decay;
- \(\{Y_i^{(1)}\}_{i=1,2,\ldots} \) is a sequence of independent identically distributed (externally excited) jumps with distribution function \(H(y) \), \(y > 0 \), at the corresponding random times \(\{T_i^{(1)}\}_{i=1,2,\ldots} \) following a homogeneous Poisson process \(M_t \) with constant intensity \(\rho > 0 \);
- \(i \) is the indicator function.

(b) Each immigrant \(D_m \) generates a cluster \(C_m = C_{D_m} \), which is the random set formed by the points of generations 0, 1, 2, \ldots with the following branching structure: the immigrant \(D_m \) is said to be of generation 0. Given generations 0, 1, 2, \ldots, \(n \) in \(C_m \), each point \(T_j^{(2)} \in C_m \) of generation \(n \) generates a Cox process on \((T_j^{(1)}, \infty)\) of offspring of generation \(j + 1 \) with the stochastic intensity \(Y_j^{(2)} e^{-\delta(T_j^{(1)} - T_j^{(2)})} \) where \(Y_j^{(2)} \) is a positive (self-excited) jump at time \(T_j^{(2)} \) with distribution function \(G(y) \), \(y > 0 \), independent of the points of generation 0, 1, 2, \ldots, \(n \).

(c) Given the immigrants, the centered clusters

\[
C_m - D_m = \{ T_j^{(2)} - D_m : T_j^{(2)} \in C_m \}, \quad D_m \in A,
\]

are independent identically distributed, and independent of \(A \).

(d) \(\mathbb{D} \) consists of the union of all clusters, i.e.

\[
\mathbb{D} = \bigcup_{m=1,2,\ldots} C_{D_m}.
\]

Therefore, the dynamic contagion process can also be defined as a point process \(N_t \equiv \{T_k^{(2)}\}_{k=1} \in \mathbb{R}_+ \), with the non-negative \(\mathcal{F}_t \)-stochastic intensity process \(\lambda_t \) following the piecewise deterministic dynamics with positive jumps, i.e.

\[
\lambda_t = a + (\lambda_0 - a) e^{-\delta t} + \sum_{t \leq t} Y_i^{(1)} e^{-\delta(t - T_i^{(1)})} \mathbb{1}(T_i^{(1)} \leq t)
\]

\[
+ \sum_{t \leq t} Y_k^{(2)} e^{-\delta(t - T_k^{(2)})} \mathbb{1}(T_k^{(2)} \leq t),
\]

where

- \(\{T_k^{(2)}\}_{k=1,2,\ldots} \) is a history of the process \(N_t \), with respect to which \(\{\lambda_t\}_{t \geq 0} \) is adapted;
- \(\{Y_k^{(2)}\}_{k=1,2,\ldots} \) is a sequence of independent identically distributed positive (self-excited) jumps with distribution function \(G(y) \), \(y > 0 \), at the corresponding random times \(\{T_k^{(2)}\}_{k=1,2,\ldots} \);
- the sequences \(\{Y_i^{(1)}\}_{i=1,2,\ldots} \) and \(\{T_i^{(1)}\}_{i=1,2,\ldots} \) are assumed to be independent of each other.

With the aid of the piecewise deterministic Markov process theory and using the results in Davis (1984), the infinitesimal generator of the dynamic contagion process \((\lambda_t, N_t, t)\) acting on a function \(f(\lambda, n, t) \in \Omega(A) \) is given by

\[
\mathcal{A}f(\lambda, n, t) = \frac{df}{dt} - \delta (\lambda - a) \frac{df}{d\lambda}
\]

\[
+ \rho \left(\int_0^\infty f(\lambda + y, n, t) dH(y) - f(\lambda, n, t) \right)
\]

\[
+ \lambda \left(\int_0^\infty f(\lambda + y, n + 1, t) dG(y) - f(\lambda, n, t) \right),
\]

where \(\Omega(A) \) is the domain of generator \(\mathcal{A} \) such that \(f(\lambda, n, t) \) is differentiable with respect to \(\lambda, t \) for all \(\lambda, n, t \), and

\[
\left| \int_0^\infty f(\lambda + y, n, t) dH(y) - f(\lambda, n, t) \right| < \infty,
\]

\[
\left| \int_0^\infty f(\lambda + y, n + 1, t) dG(y) - f(\lambda, n, t) \right| < \infty.
\]

The dynamic contagion process has some key distributional properties which will be used in this paper and are listed as below. The corresponding proofs have been given by Dassios and Zhao (2011) and we omit them here.

Proposition 2.1. \(\delta > \mu_{1c} \) is the stationarity condition of the intensity process \(\lambda_t \) of a dynamic contagion process, where

\[
\mu_{1c} := \int_0^\infty y dG(y).
\]

Theorem 2.1. If \(\delta > \mu_{1c} \), then the Laplace transform of the asymptotic distribution of \(\lambda_t \) is given by

\[
\hat{F}(t) = \lim_{t \to \infty} \mathbb{E} \left[e^{-\lambda_t} \right] = \exp \left(-\int_0^\infty \frac{a u + \rho (1 - \hat{h}(u))}{\delta u + \hat{g}(u) - 1} du \right),
\]

and (2) is also the Laplace transform of the stationary distribution of the process \(\{\lambda_t\}_{t \geq 0} \), where

\[
\hat{h}(u) := \int_0^\infty e^{-uy} dH(y), \quad \hat{g}(u) := \int_0^\infty e^{-uy} dG(y).
\]

Corollary 2.1. If \(\delta > \mu_{1c} \), then,

\[
\lim_{t \to \infty} \mathbb{E} \left[\lambda_t | \lambda_0 \right] = \frac{\mu_{1c} \delta + a \delta}{\delta - \mu_{1c}},
\]

and (3) is also the mean of stationary distribution of the process \(\{\lambda_t\}_{t \geq 0} \).

Theorem 2.2. For any function \(f \in \Omega(A) \), we have

\[
\int_{\lambda_t \in \Omega(A)} \mathcal{A} f(\lambda_t) P(\lambda_t) d\lambda = 0,
\]

where \(E = [a, \infty) \) is the domain of \(\lambda \), \(\mathcal{A} f(\lambda) \) is the infinitesimal generator of the dynamic contagion process acting on \(f(\lambda) \), i.e.

\[
\mathcal{A} f(\lambda) = -\delta (\lambda - a) \frac{df}{d\lambda} + \rho \left(\int_0^\infty f(\lambda + y) dH(y) - f(\lambda) \right)
\]

\[
+ \lambda \left(\int_0^\infty f(\lambda + z) dG(z) - f(\lambda) \right).\]
and $\Pi(\lambda)$ is the density function of λ with the Laplace transform specified by (2).

Theorem 2.3. If the externally excited and self-excited jumps follow exponential distributions, i.e. $H \sim \text{Exp}(\alpha)$, $G \sim \text{Exp}(\beta)$ and $\delta \beta > 1$, then, the stationary distribution of λ_1 is given by

\[
\begin{align*}
gamma_1 & \sim \text{Gamma}\left\{ \frac{1}{\delta} \left(a + \frac{\rho}{\delta} + 1 \right), \frac{\delta \beta - 1}{\delta} \right\}; \\
gamma_2 & \sim \text{Gamma}\left\{ \frac{\rho (\alpha - \beta)}{\delta}, \gamma_1 \right\}; \\
gamma_3 & \sim \text{Gamma}\left\{ \frac{a + \rho}{\delta}, \gamma_2 \right\}; \\
gamma_4 & \sim \text{Gamma}\left\{ \frac{a + \rho}{\delta}, \alpha \right\}; \\
\end{align*}
\]

where independent random variables $\Gamma_1 \sim \text{Gamma}\left\{ \frac{1}{\delta} \left(a + \frac{\rho}{\delta (\alpha - \beta) + 1} \right), \frac{\delta \beta - 1}{\delta} \right\}$, $\Gamma_2 \sim \text{Gamma}\left\{ \frac{\rho (\alpha - \beta)}{\delta}, \gamma_1 \right\}$, $\Gamma_3 \sim \text{Gamma}\left\{ \frac{a + \rho}{\delta}, \gamma_2 \right\}$, $\Gamma_4 \sim \text{Gamma}\left\{ \frac{a + \rho}{\delta}, \alpha \right\}$.

\bar{P} follows a compound negative binomial distribution with underlying exponential jumps, and P follows a compound Poisson distribution with underlying exponential jumps. Theorem 2.3 implies that the Laplace transform of λ_1 is given by

\[
\mathbb{E}\left[e^{-\lambda_1 z} \right] =
\begin{cases}
\frac{\rho (\alpha - \beta)}{z} & \text{for } \alpha \geq \beta \\
\frac{\rho (\alpha - \beta)}{z} & \text{for } \alpha < \beta \text{ and } \alpha \neq \beta - \frac{1}{\delta} \\
\exp \left[\frac{\rho (\alpha - \beta)}{z} \left(a + \frac{\alpha}{\alpha + v} - 1 \right) \right] & \text{for } \alpha = \beta - \frac{1}{\delta}
\end{cases}
\]

where

- $X_0 = x \geq 0$ is the initial reserve at time $t = 0$;
- $c > 0$ is the constant rate of premium payment per unit time;
- N_t is a point process ($N_0 = 0$) counting the number of cumulative arrived claims in the time interval $[0, t]$, driven by a dynamic contagion process with its stochastic intensity process λ_t and the initial intensity $\lambda_0 = \lambda > 0$;
- $\{Z_t\}_{t=1,2,\ldots}$ is a sequence of independent identical distributional positive random variables (claim sizes) with distribution function $F(z), z > 0$, and also independent of N_t; the mean, Laplace transform of density function and tail are denoted respectively by $\mu_{12} := \int_0^\infty z dF(z), \bar{Z}(u) := \int_u^\infty e^{-uz} dF(z)$.

The surplus process X_t is a right-continuous function of time t.

Definition 3.1 (Ruin Time). The ruin (stopping) time τ^* is defined by

\[
\tau^* = \inf \{ t > 0 | X_t \leq 0 \}.
\]

in particular, $\tau^* = \infty$ means ruin does not occur.

We are interested in the ruin probability in finite time,

\[
P \{ \tau^* < t | X_0 = x, \lambda_0 = \lambda \} = \lim_{t \to \infty} P \{ \tau^* < t | X_0 = x, \lambda_0 = \lambda \}.
\]

3.1. Net profit condition

Theorem 3.1. If $\delta > \mu_{1c}$ and the arrival of claims is driven by a dynamic contagion process, then, the net profit condition is given by

\[
\frac{c + \mu_{1c} \rho + \alpha \delta}{\delta} - \mu_{1c} \mu_{12} > 0.
\]

Proof. Obviously, we have the expectation of surplus process X_t defined by (5),

\[
\mathbb{E}[X_t] = x + ct - \sum_{i=1}^{N_t} Z_i, \quad t \geq 0.
\]

3.2. Simulation example

Before giving mathematical proofs, we can have a first glance at this ruin problem via Monte Carlo simulation. Assume the stationarity condition for λ_t and net profit condition for X_t both hold, and the two types of jump sizes, and claim sizes all follow...
exponential distributions, i.e. \(H \sim \text{Exp}(\alpha) \), \(G \sim \text{Exp}(\beta) \) and \(Z \sim \text{Exp}(\gamma) \). We implement the simulation algorithm for a dynamic contagion process provided by Dassios and Zhao (2011), with parameters set by

\[
(a, \lambda_0, \rho, \delta; \alpha, \beta, \gamma; x, c) = (0.7, 0.7, 0.5, 2.0; 2.0, 1.5, 1.0; 10, 1.5).
\]

The ruin probability \(P \{ \tau^* < t | X_0 = x, \lambda_0 = \lambda \} \) against the time from \(t = 0 \) to \(t = 400 \) is plotted in Fig. 1. Each point is calculated based on 50,000 replications of dynamic contagion processes. We can observe that the probability increases and converges around 30% when time \(t \) increases.

Remark 3.1. It is impossible to simulate infinitely long \((t = \infty) \) paths for estimating the ultimate ruin probability \(P \{ \tau^* < t = \infty | X_0 = x, \lambda_0 = \lambda \} \). However, thanks to the convergence of simulation observed in Fig.1, we truncate the simulated paths at a large time (say, \(t = 400 \)) as an approximation to \(t = \infty \).

4. Exponential martingales and generalised Lundberg’s fundamental equation

In this section, we find some useful exponential martingales which link to the generalised Lundberg’s fundamental equation. More importantly, they are crucial for deriving some key results of the ruin problem in the later sections.

Theorem 4.1. Assume \(\delta > \mu_{1c} \) and the net profit condition (6), we have a martingale

\[e^{-\nu X} e^{\nu t} e^{-rt}, \quad r \geq 0, \]

where constants \(r, \nu \), and \(\eta \) satisfy a generalised Lundberg’s fundamental equation

\[
\begin{cases}
-\delta \eta + \hat{\delta} (\nu - \lambda) \eta - 1 = 0 \\
\rho (\hat{\theta} (\eta) - 1) - r + \alpha \theta \eta - c \nu \eta = 0 \\
(\rho > \mu_{1c} \lambda + \mu_{1c}, \quad \delta > \mu_{1c}) .
\end{cases}
\]

(7)

If \(0 \leq r < r^* \), then (7) has a unique positive solution \((\nu^+_r, \eta^+_r) > 0 \), where \(r^* =: \rho (\hat{\theta}(\eta^*) - 1) + \alpha \theta \eta^* \),

and \(\eta^* \) is the unique positive solution to

\[1 + \delta \eta = \hat{\theta}(\eta). \]

(9)

Proof. The (Model-1 type) infinitesimal generator of the process \((X_t, \lambda_t, t) \) acting on a function \(f(x, \lambda, t) \) in \(\Omega(\mathcal{K}) \) is given by

\[
\begin{align*}
\mathcal{A}f(x, \lambda, t) &= \frac{\partial f}{\partial t} - \delta (\lambda - a) \frac{\partial f}{\partial \lambda} + c f(x, \lambda, t) \\
&\quad + \lambda \left(\int_{y=0}^{\infty} \int_{z=0}^{\infty} f(x - z, \lambda + y, t) dZ(y) dG(y) - f(x, \lambda, t) \right) \\
&\quad + \rho \left(\int_{0}^{\infty} f(x, \lambda + y, t) dH(y) - f(x, \lambda, t) \right).
\end{align*}
\]

(10)

For the classification of Model-1 type and Model-2 type generators for ruin problem, see Dassios and Embrechts (1989).

Assume the form

\[f(x, \lambda, t) = e^{-\nu X} e^{\nu t} e^{-rt}, \]

and plug into the generator (10). To be a martingale, set \(\mathcal{A}f(x, \lambda, t) = 0 \), then

\[
-r - \delta (\lambda - a) \eta - c \nu \eta + \lambda \left(\int_{y=0}^{\infty} \int_{z=0}^{\infty} e^{\nu z} e^{\nu y} dZ(y) dG(y) - 1 \right) \\
+ \rho \left(\int_{0}^{\infty} e^{\nu y} dH(y) - 1 \right) = 0,
\]

and rewrite as

\[
\begin{align*}
-\delta \eta + \hat{\delta} (\nu - \lambda) \eta - 1 &= 0 \\
\rho (\hat{\theta}(\eta) - 1) - r + \alpha \theta \eta - c \nu \eta &= 0,
\end{align*}
\]

holding for any \(\lambda \). Hence, we have (7). The proofs of the uniqueness and the associated conditions for the solution to (7) are given by Lemmas 4.1 and 4.2 as below.

Lemma 4.1. Under \(\delta > \mu_{1c} \) and the net profit condition (6), there are unique positive solution \(\eta^+_r \) and unique negative solution \(\eta^-_r \) to \(\eta \) of the generalised Lundberg’s fundamental equation (7); in particular, for \(r = 0 \), there are unique positive solution \(\eta^+_0 \) and solution zero.

Proof. Rewrite the generalised Lundberg’s fundamental equation (7) w.r.t. \(\eta \),

\[
\begin{align*}
\frac{\partial}{\partial \eta} \left(\hat{\theta}(\eta) - 1 \right) \frac{\partial}{\partial \eta} \eta - \rho \left(\frac{\partial}{\partial \eta} \hat{\theta}(\eta) \right) &= 0, \\
\frac{\partial}{\partial \eta} \left(\hat{\theta}(\eta) - 1 \right) - r + \alpha \theta \eta - c \nu \eta &= 0,
\end{align*}
\]

(9)

Consider the first equation above, i.e.

\[f(\eta) = l(\eta), \quad r > 0, \]

where

\[f(\eta) =: \hat{\theta} \left(\frac{\partial}{\partial \eta} \hat{\theta}(\eta) - 1 \right) \frac{\partial}{\partial \eta} \hat{\theta}(\eta), \]

\[l(\eta) =: 1 + \delta \eta, \]

Obviously, \(f(\eta) \) is a strictly increasing and strictly convex function of \(\eta \), since

\[
\begin{align*}
\frac{\partial}{\partial u} (\hat{\theta} - 1) > 0, & \quad \frac{\partial^2 \hat{\theta} - 1}{\partial u^2} > 0, \\
\frac{\partial}{\partial u} (\hat{\theta} - 1) > 0, & \quad \frac{\partial^2 \hat{\theta} - 1}{\partial u^2} > 0, \quad \frac{\partial^2 \hat{\theta} - 1}{\partial u^2} > 0,
\end{align*}
\]

Fig. 1. Simulated ruin probability \(P \{ \tau^* < t | X_0 = x, \lambda_0 = \lambda \} \) by 50,000 replications of dynamic contagion processes.
Furthermore, we have \(f(\eta_r) > 0, f(-\infty) = 0, f(+\infty) = +\infty \), and \(l(\eta_r) \) is a strictly linearly increasing function of \(\eta_r \).

We discuss the solutions for the two cases \(r > 0 \) and \(r = 0 \) separately as below.

- For \(r > 0 \), we have

 \[0 < f(0) = \hat{z}\left(\frac{r}{c}\right) < 1 = l(0), \]

 and the slope of the tangent at \(\eta_r = 0 \),

 \[\frac{\partial l(\eta_r)}{\partial \eta_r} \bigg|_{\eta_r = 0} > \frac{\partial f(\eta_r)}{\partial \eta_r} \bigg|_{\eta_r = 0} > 0. \]

By the stationarity condition \(\delta > \mu_{1c} \) and the net profit condition (6), we have

\[
\frac{\partial f(\eta_r)}{\partial \eta_r} \bigg|_{\eta_r = 0} = \frac{-a\delta - \mu_{1c} \rho \hat{z}(u) - 2}{c} \left(\frac{r}{c}\right) \mu_{1c} \\
< \frac{-a\delta - \mu_{1c} \rho \hat{z}(u) - 2}{c} \left(\frac{r}{c}\right) \mu_{1c} + \hat{z}(0) \mu_{1c} \\
= \frac{a\delta + \mu_{1c} \rho}{c} \mu_{1c} + \hat{z}(0) \mu_{1c} \\
< \delta.
\]

It is clear that there are unique positive solution \(\eta^+_r \) and unique negative solution \(\eta^-_r \) by plotting \(f(\eta_r) \) and \(l(\eta_r) \), see Fig. 2.

- For \(r = 0 \), we have

 \[0 < f(0) = \hat{z}(0) = 1 = l(0), \]

 and the slope of the tangent at \(\eta_r = 0 \),

 \[\frac{\partial l(\eta_r)}{\partial \eta_r} \bigg|_{\eta_r = 0} > \frac{\partial f(\eta_r)}{\partial \eta_r} \bigg|_{\eta_r = 0} > 0. \]

By the stationarity condition and the net profit condition, we have

\[
\frac{\partial f(\eta_r)}{\partial \eta_r} \bigg|_{\eta_r = 0} < \frac{a\delta + \mu_{1c} \rho}{c} \mu_{1c} + \mu_{1c} < \delta.
\]

It is clear that there are unique positive solution \(\eta^+_0 \) and solution 0 by plotting \(f(\eta_r) \) and \(l(\eta_r) \). □

In order to find the positive solution to \(v_r \), we will only consider the unique positive solution \(\eta^+_r \) for \(r \geq 0 \) in the sequel.

Lemma 4.2. If \(0 \leq r < r^* \),

\[r^* := \rho \left(\hat{h}(-\eta^+) - 1 \right) + a\delta \eta^*, \]

where the constant \(\eta^* \) is the unique positive solution to

\[1 + \delta \eta^* = \hat{g}(-\eta^*), \]

then, there exists a unique positive solution \(v^+_r \) to \(v_r \) of the generalised Lundberg’s fundamental equation (7),

\[v^+_r = -\frac{r - a\delta \eta^+_r + \rho \left(1 - \hat{h}(-\eta^+_r)\right)}{c}. \]

Proof. By substituting \(\eta^+_r \) (from Lemma 4.1) into the second equation of the generalised Lundberg’s fundamental equation (7), we have the solution to \(v_r \), i.e. (12). Define

\[V(\eta_r) := -\frac{r - a\delta \eta^+_r + \rho \left(1 - \hat{h}(-\eta^+_r)\right)}{c}. \]

Obviously, \(V(\eta_r) \) is a strictly increasing and strictly convex function of \(\eta_r \), as \(\frac{\partial V(\eta_r)}{\partial \eta_r} > 0 \) and \(\frac{\partial^2 V(\eta_r)}{\partial \eta_r^2} > 0 \); also, \(V(-\infty) = +\infty \); \(V(0) = -\frac{r}{c} < 0 \); hence, there is unique (positive) root \(\eta^+_r > 0 \) such that \(V(\eta^+_r) = 0 \), also see Fig. 2.

In order to find the unique positive solution \(v^+_r \), such that \(v^+_r = V(\eta^+_r) = 0 \), we have the condition \(\eta^+_r > \eta^*_r \), which also is equivalent to the condition

\[l(\eta^*_r) > f(\eta^*_r), \quad \eta^*_r > 0, \]

or,

\[1 - \delta \eta^*_r > \hat{g}(-\eta^*_r), \quad \eta^*_r > 0, \]

note that, \(f(\eta^*_r) = \hat{g}(-\eta^*_r) \). Under the stationarity condition \(\delta > \mu_{1c} \), the equation \(1 + \delta \eta^*_r = \hat{g}(-\eta^*_r) \) has the unique positive solution \(\eta^*_r \) (independent from \(r > 0 \)) and the solution 0. Therefore, we have the condition

\[0 < \eta^+_r < \eta^* \],

such that

\[1 + \delta \eta^+_r > \hat{g}(-\eta^*_r), \quad \eta^*_r > 0. \]

We discuss the two cases \(r > 0 \) and \(r = 0 \) separately as below.

- If \(r = 0 \), we have \(\eta^+_0 = \eta|_{r=0} = 0, \) and it is clear that \(\eta^+_0 > \eta^*_0 > 0 \) holds, therefore, \(v^+_0 > 0 \) exists without any condition.
Given the existence and uniqueness of solution (η^n, γ^n) to the generalised Lundberg’s fundamental equation (7), we have $\eta^n > \eta^n_0$, since
\[1 + \delta \eta^n_0 = \hat{\bar{Z}}(\eta^n_0) > (\eta^n_0). \]
we know that, if $\delta > \mu_1\hat{u}$ the equation $1 + \delta \eta_t = \hat{\bar{Z}}(\eta_t)$ has solution 0 and $\eta^n > 0$, then, η^n_0 should be between them, i.e. $\eta^n > \eta^n_0 > 0$, also see Fig. 2. Therefore, we have the full ranking
\[0 < \eta^n_0 < \eta^n_0 < \eta^n. \]

Remark 4.2. In particular, for $r = 0$, we have a martingale $e^{-v_0^0 X_t} e^0_0 \hat{u}_t$, where (v_0, θ_0) is the unique positive solution to the equations
\[
\begin{align*}
\delta v_0^0 + \mu_1 \hat{u} + \frac{\hat{\bar{Z}}(\eta_t)}{\delta - \mu_1 \hat{u}} &= 0, \\
\lambda^0 &= \hat{\bar{Z}}(\eta_t) - 1.
\end{align*}
\]

The martingales and generalised Lundberg’s fundamental equation derived in this section are the building blocks of the martingale method and change of measure, two key approaches adopted in the following sections.

5. Ruin probability via original measure

Theorem 5.1. The ruin probability conditional on X_0 and X_0 is given by
\[
P \left\{ \tau^* < \infty | X_0 = x, \lambda_0 = \lambda \right\} = \frac{e^{-v_0^0 x} e^0_0 \hat{u}_t}}{E \left[e^{-v_0^0 X_t} e^0_0 \hat{u}_t | \tau^* < \infty ; X_0 = x, \lambda_0 = \lambda \right]}.
\]

Proof. By the optional stopping theorem, a bounded martingale stopped at a stopping time is still a martingale. Now we consider the martingale found by Theorem 4.1 stopped at the ruin time, i.e.
\[e^{-v_0^0 X_t} e^0_0 \hat{u}_t e^{-t(\tau^* + 1)}, \quad 0 \leq r < r^*. \]
By the martingale property, we have
\[
E \left[e^{-v_0^0 X_t} e^0_0 \hat{u}_t e^{-t(\tau^* + 1)} \right] = E \left[e^{-v_0^0 X_t} e^0_0 \hat{u}_t e^{-t(\tau^* + 1)} | X_0 = x, \lambda_0 = \lambda \right] = e^{-v_0^0 x} e^0_0 \hat{u}_t,
\]
and
\[
E \left[e^{-v_0^0 X_t} e^0_0 \hat{u}_t e^{-t(\tau^* + 1)} | \tau^* \leq t \right] P[\tau^* \leq t] + E \left[e^{-v_0^0 X_t} e^0_0 \hat{u}_t e^{-t(\tau^* + 1)} | \tau^* > t \right] P[\tau^* > t] = e^{-v_0^0 x} e^0_0 \hat{u}_t.
\]
or,
\[
E \left[e^{-v_0^0 X_t} e^0_0 \hat{u}_t e^{-t(\tau^* + 1)} \right] P[\tau^* \leq t] + e^{-v_0^0 x} E \left[e^{-v_0^0 X_t} e^0_0 \hat{u}_t e^{-t(\tau^* + 1)} \right] P[\tau^* > t] = e^{-v_0^0 x} e^0_0 \hat{u}_t.
\]

Remark 5.1. Note that, the overshoot $X_t - X_t > 0$, $\lambda_t > 0$, then, $e^{-v_0^0 X_t} > 1, e^0_0 \hat{u}_t > 1$, we have an inequality for the ruin probability,
\[P \left\{ \tau^* < \infty | X_0 = x, \lambda_0 = \lambda \right\} < e^{-v_0^0 x} e^{-v_0^0 x} \]

$e^{-v_0^0 x}$ is a rough up bound of ruin probability, as it could be greater than one when λ_0 is relatively large. In order to obtain a more precise upper bound, it is better to find the distribution property of $E \left[e^{-v_0^0 X_t} | \tau^* < \infty \right]$ but it would not be easy.
Example 5.1. If \(Z \sim \text{Exp}(\gamma) \), then,

\[
P \{ \tau^* < \infty | X_0 = x, \lambda_0 = \lambda \} = \frac{\gamma}{\gamma - v_0} e^{v_0 x} e^{-v_0 x}.
\]

For instance, the comparison between bounds and the ruin probability \(P \{ \tau^* < \infty | X_0 = 10, \lambda_0 = \lambda \} \) estimated by simulation of 50,000 replications with parameter setting

\[
(a; \rho; \delta; \alpha; \beta; \gamma; x; c) = (0.7; 0.5; 2.0; 2.0; 1.5; 1.0; 10, 1.5),
\]

\((\eta_0^+, v_0^+) = (0.0842, 0.9032) \),

is given by Table 1 and Fig. 3.

6. Ruin probability via change of measure

In this section, we investigate the ruin probability and asymptotics by change of measure by the martingale derived by Theorem 4.1. We will find that under this new measure the ruin becomes certain, and this makes the simulation more efficient than under the original measure where the ruin is not certain and even rare. Similar ideas of improving simulation of rare events by change of measure can also be found in Asmussen (1985) and more recently Asmussen and Glynn (2007).

6.1. Ruin probability by change of measure

Theorem 6.1. The ruin probability conditional on \(X_0 \) and \(\lambda_0 \) can be expressed under new measure \(\overline{\mathbb{P}} \) by

\[
P \{ \tau^* < \infty | X_0 = x, \lambda_0 = \lambda \} = e^{-v_0^+ x} e^{v_0^+ \lambda} \overline{\mathbb{E}} \left[\Psi \left(X_{\tau^*} \right) \frac{e^{-m_0^+ \tau^*}}{g(-\eta_0^+)} | X_0 = x, \lambda_0 = \lambda \right],
\]

where \(\Psi(x) = \frac{\overline{Z}(x)e^{v_0^+ x}}{\int_x^{\infty} e^{v_0^+ z} \, dZ(z)} \),

\[
\overline{Z}(x) = \int_x^{\infty} \overline{e}^{v_0^+ z} \, dZ(z),
\]

assuming the net profit condition holds under the original measure \(\mathbb{P} \), and the stationarity condition holds under both measures \(\mathbb{P} \) and \(\overline{\mathbb{P}} \). The parameter setting for the process \((X_t, \lambda_t) \) under \(\mathbb{P} \) transforms to the new parameter setting for the process \((\overline{X}_t, \overline{\lambda}_t) \) under \(\overline{\mathbb{P}} \) as follows:

- \(a \rightarrow \overline{a} = (1 + \delta \eta_0^+) a \),
- \(c \rightarrow \overline{c} = c \),
- \(\delta \rightarrow \overline{\delta} = \delta \),
- \(\rho \rightarrow \overline{\rho} = \overline{h}(-\eta_0^+) \rho \),
- \(Z(z) \rightarrow \overline{Z}(z) \),
- \(g(u) \rightarrow \overline{g}(u) = \frac{\overline{Z}(u)}{\int_u^{\infty} e^{v_0^+ z} \, dZ(z)} \),
- \(h(u) \rightarrow \overline{h}(u) = \frac{\overline{Z}(u)}{\int_u^{\infty} e^{v_0^+ z} \, dZ(z)} \).

Fig. 3. Simulated ruin probability \(P \{ \tau^* < \infty | X_0 = 10, \lambda_0 = \lambda \} \) v.s. up bounds.

where

\[
\begin{aligned}
d\overline{Z}(z) &= e^{v_0^+ z} dZ(z), & d\overline{G}(u) &= e^{v_0^+ u} dG(u), \\
\overline{d}h(u) &= e^{v_0^+ u} dh(u) & \overline{d}\overline{h}(u) &= e^{v_0^+ u} d\overline{h}(u) = e^{v_0^+ u} d\overline{g}(u).
\end{aligned}
\]

Proof. We consider the (Model-2 type) generator

\[
\mathcal{A} f(x, \lambda) = -\delta(\lambda - a) \frac{\partial f}{\partial \lambda} + c \frac{\partial f}{\partial x} + \lambda \int_{x=0}^{\infty} \int_{y=0}^{x} f(x-z, \lambda + y) \, dZ(z) \, dG(y) \]

\[
+ \lambda \left(\int_{x=0}^{\infty} f(x, \lambda + y) \, dH(y) - f(x, \lambda) \right),
\]

\(x > 0 \). (18)

The solution of the integro-differential equation \(\mathcal{A} f(x, \lambda) = 0 \) is the ruin probability

\[
f(x, \lambda) = P \{ \tau^* < \infty | X_0 = x, \lambda_0 = \lambda \}.
\]

Change measure from \(\mathbb{P} \) to \(\overline{\mathbb{P}} \). Substituting the function

\[
f(x, \lambda) = e^{-v_0^+ x} e^{v_0^+ \lambda} \overline{f}(x, \lambda)
\]

into the generator \(\mathcal{A} \), we have

\[
-\delta(\lambda - a) \left(\eta_0^+ \overline{\lambda} + \frac{\partial \overline{f}}{\partial \lambda} \right) + c \left(-v_0^+ \overline{\lambda} + \frac{\partial \overline{f}}{\partial x} \right) + \lambda \int_{x=0}^{\infty} \int_{y=0}^{x} f(x-z, \lambda + y) e^{v_0^+ z} e^{v_0^+ y} \, dZ(z) \, dG(y)
\]

\[
+ \overline{Z}(x)e^{v_0^+ \lambda} - \overline{f} \overline{Z}(x).
\]

Theorem 6.1
\[\begin{align*}
\rho \left(\int_0^\infty \tilde{f}(x, \lambda + y) e^{\rho y} dH(y) - \tilde{f} \right) &= 0. \quad (19) \\
\end{align*}\]

Remind that, by Theorem 4.1 for \(r = 0 \), we have a \(F_{-}^\rho \)-martingale
\[e^{-\nu_0^+ x + \xi_0^+} \mathcal{E} \text{ where } (\nu_0^+, \lambda_0^+) \text{ is the unique positive solution to the equations}
\[\begin{aligned}
\delta \eta_0^+ &= \tilde{z}(-\nu_0^+) \hat{g}(\lambda_0^+) - 1 \\
cu_0^+ &= a \delta \eta_0^+ + \rho \left(\hat{h}(\lambda_0^+) - 1 \right) \\
\left(c > \mu_{1u} \rho + a \delta \right)_{12}, \quad \delta > \mu c.
\end{aligned}\]

Substitute \(cu_0^+ = a \delta \eta_0^+ + \rho (\hat{h}(\lambda_0^+) - 1) \) and \(\delta \eta_0^+ = \tilde{z}(-\nu_0^+)/\hat{g}(\lambda_0^+) - 1 \) into (19), we have
\[\begin{align*}
-\delta (\lambda - a) & \frac{\partial \tilde{f}}{\partial \lambda} + c \frac{\partial \tilde{f}}{\partial x} \\
+ \lambda \left(\int_0^\infty \int_0^x \tilde{f}(x - z, \lambda + y) e^{\rho y} dZ(z) dG(y) \\
+ \tilde{Z}(x) e^{\rho y} \tilde{h}(\lambda_0^+) - \tilde{z}(-\nu_0^+) \hat{g}(\lambda_0^+) - \tilde{f} \right) \\
+ \rho \left(\int_0^\infty \tilde{f}(x, \lambda + y) e^{\rho y} dH(y) - \hat{h}(\lambda_0^+) \tilde{f} \right) &= 0.
\end{align*}\]

Change measure (Esscher transform) by (17), and rewrite as
\[\begin{align*}
-\delta (\lambda - a) & \frac{\partial \tilde{f}}{\partial \lambda} + c \frac{\partial \tilde{f}}{\partial x} \\
+ \lambda \left(\int_0^\infty \int_0^x \tilde{f}(x - z, \lambda + y) d\tilde{Z}(z) d\tilde{G}(y) \\
+ \tilde{Z}(x) e^{\rho y} \tilde{h}(\lambda_0^+) - \tilde{z}(-\nu_0^+) \hat{g}(\lambda_0^+) - \tilde{f} \right) \\
+ \rho \left(\int_0^\infty \tilde{f}(x, \lambda + y) d\tilde{H}(y) - \tilde{f} \right) &= 0.
\end{align*}\]

Since \(\tilde{z}(-\nu_0^+) \hat{g}(\lambda_0^+) = 1 + \delta \eta_0^+ \), we have
\[\begin{align*}
-\delta (\lambda - a) & \frac{\partial \tilde{f}}{\partial \lambda} + c \frac{\partial \tilde{f}}{\partial x} \\
+ (1 + \delta \eta_0^+) \lambda \left(\int_0^\infty \int_0^x \tilde{f}(x - z, \lambda + y) d\tilde{Z}(z) d\tilde{G}(y) \\
+ \tilde{Z}(x) e^{\rho y} \tilde{h}(\lambda_0^+) \hat{g}(\lambda_0^+) - \tilde{f} \right) \\
+ \rho \left(\int_0^\infty \tilde{f}(x, \lambda + y) d\tilde{H}(y) - \tilde{f} \right) &= 0.
\end{align*}\]

Note that,
\[\tilde{Z}(x) = \int_x^\infty \tilde{Z}(z) dz = \int_x^\infty \frac{e^{x+y} \tilde{Z}(z)}{\tilde{z}(-\nu_0^+)} dz = \int_x^\infty \frac{e^{x+y} \tilde{Z}(z)}{\tilde{z}(-\nu_0^+)} dz = \frac{\psi(x) e^{-\lambda_0^+} \tilde{Z}(x),}{\hat{g}(\lambda_0^+)}\]

where \(\psi(x) \) is defined by (16). Hence, we have
\[\begin{align*}
-\delta (\lambda - a) & \frac{\partial \tilde{f}}{\partial \lambda} + c \frac{\partial \tilde{f}}{\partial x} \\
+ (1 + \delta \eta_0^+) \lambda \left(\int_0^\infty \int_0^x \tilde{f}(x - z, \lambda + y) d\tilde{Z}(z) d\tilde{G}(y) \\
+ \psi(x) e^{-\lambda_0^+} \tilde{Z}(x) - \tilde{f} \right) \\
+ \rho \left(\int_0^\infty \tilde{f}(x, \lambda + y) d\tilde{H}(y) - \tilde{f} \right) &= 0. \quad (20)
\end{align*}\]

This integro-differential equation has the solution
\[\tilde{f}(x, \lambda, \lambda_0) = e^{-\lambda_0^+} \tilde{Z}(x) \frac{\psi(x) e^{-\lambda_0^+} \tilde{Z}(x) - \tilde{f}}{\hat{g}(\lambda_0^+)} \quad \lambda_0 = \lambda, \lambda_0 = \lambda.\]

It is similar to the expectation of a Gerber–Shiu penalty function (see Gerber and Shiu, 1998). Therefore, by comparing (20) with (18), we have the parameters for the process \((X_t, \lambda_t) \) under \(P \) transformed to the parameters for the process \((X_t, \lambda_t) \) under \(P^\rho \) as follows:
\begin{itemize}
\item \(a \to \tilde{a} = a, \)
\item \(c \to \tilde{c} = c, \)
\item \(\delta \to \tilde{\delta} = \delta. \)
\item \(\rho \to \tilde{\rho} = \hat{h}(\lambda_0^+) \rho, \)
\item \(\tilde{Z}(x) \to \tilde{Z}(x), \)
\item \(G(y) \to \tilde{G}(y), \)
\item \(H(y) \to \tilde{H}(y), \)
\end{itemize}

and the ruin probability is given by
\[P \left\{ \tau^* < \infty \mid X_0 = x, \lambda_0 = \lambda \right\} = e^{-\lambda_0^+} \tilde{Z}(x) \frac{\psi(x) e^{-\lambda_0^+} \tilde{Z}(x) - \tilde{f}}{\hat{g}(\lambda_0^+)} \quad \lambda_0 = \lambda, \lambda_0 = \lambda.\]

Expression by \(\tilde{Z} \). Alternatively, we can express the results above w.r.t. \(\lambda \) where \(\lambda = (1 + \delta \eta_0^+) \lambda \). Rewrite (20) as
\[\begin{align*}
-\delta (\lambda - (1 + \delta \eta_0^+) a) & \frac{\partial \tilde{f}}{\partial \lambda} + c \frac{\partial \tilde{f}}{\partial x} \\
+ \lambda \left(\int_0^\infty \int_0^x \tilde{f}(x - z, \lambda + y) d\tilde{Z}(z) d\tilde{G}(y) \\
+ \psi(x) e^{-\lambda_0^+} \tilde{Z}(x) - \tilde{f} \right) \\
+ \rho \left(\int_0^\infty \tilde{f}(x, \lambda + y) d\tilde{H}(y) - \tilde{f} \right) &= 0.
\end{align*}\]

Given \(d\tilde{H}(y) = \tilde{h}(y) dy \) and \(d\tilde{G}(y) = \tilde{g}(y) dy \), change variable by \(u = (1 + \delta \eta_0^+) y \), we have the equation of \(f(\lambda, x), \)
\[\begin{align*}
-\delta (\lambda - (1 + \delta \eta_0^+) a) & \frac{\partial \tilde{f}}{\partial \lambda} + c \frac{\partial \tilde{f}}{\partial x} \\
+ \lambda \left(\int_0^\infty \int_0^x \tilde{f}(x - z, \lambda + u) d\tilde{Z}(z) \frac{\tilde{g}(u)}{1 + \delta \eta_0^+} du \right) \\
+ \psi(x) e^{-\lambda_0^+} \tilde{Z}(x) - \tilde{f} \right) \\
+ \rho \left(\int_0^\infty \tilde{f}(x, \lambda + y) d\tilde{H}(y) - \tilde{f} \right) &= 0.
\end{align*}\]
Therefore, by comparing (21) with (18), we have the parameters \(P \) follow the stationary distribution under

\[
\begin{align*}
&= \mathbb{E} \left[\Psi \left(X_{\tau^*} \right) \frac{e^{-\frac{m^+_0}{\delta\eta_0} x}}{\mathbb{E} \left[e^{-\frac{m^+_0}{\delta\eta_0} x} \right]} \left(\tau^* < \infty \right) \mid \lambda_0 = \lambda, X_0 = x \right].
\end{align*}
\]

Therefore, by comparing (21) with (18), we have the parameters for the process \((X_t, \lambda_t)\) under \(\mathbb{P} \) transformed to the parameters for the process \((X_t, \lambda_t)\) under \(\mathbb{P} \) as follows:

- \(a / \mathbb{P} = \left(1 + \delta \eta_0^+ \right) a \),
- \(c \to \mathbb{C} \),
- \(\delta / \mathbb{P} = \delta \),
- \(\rho / \mathbb{P} = h(\eta_0^+) \rho \),
- \(Z(z) \to Z(\mathbb{C}) \),
- \(g(u) \to \tilde{g}(u) = \frac{\tilde{h}(\eta_0^+)}{\tilde{h}(\eta_0^+) + \eta_0} \tilde{g}(u) \),
- \(h(u) \to \mathbb{H}(u) = \frac{\tilde{h}(\eta_0^+)}{\tilde{h}(\eta_0^+) + \eta_0} \tilde{h}(u) \).

and the ruin probability is given by

\[
P \{ \tau^* < \infty \mid X_0 = x, \lambda_0 = \lambda \} \times \mathbb{E} \left[e^{-\frac{m^+_0}{\delta\eta_0} X_0} \right] = e^{-\frac{m^+_0}{\delta\eta_0} x} e^{-\frac{m^+_0}{\delta\eta_0} \lambda} \mathbb{E} \left[e^{-\frac{m^+_0}{\delta\eta_0} x} \right]
\]

Assumption 6.1. Assume \(\lim_{x \to \infty} \mathbb{E} \left[e^{-\frac{m^+_0}{\delta\eta_0} x} \mid X_0 = x, \lambda_0 = \lambda \right] \) exists and independent of \(\lambda \).

Remark 6.2. Assumption 6.1 intuitively should hold as \(\tau^* \) is a long time in the future when \(x \to \infty \), however, we leave it as an open problem to find the conditions under which it is true. Moreover, since \(\mathbb{E} \left[e^{-\frac{m^+_0}{\delta\eta_0} x} \mid X_0 = x \right] \) given by (22) is bounded, then, there exists a sequence of \(x_1 < x_2 < \cdots < x_n < \cdots \) such that \(X_n \to \frac{X_n}{\lambda} \to \infty \) exists.

Remark 6.3. Under Assumption 6.1 and by (22), there exists a constant \(C \) such that \(P \{ \tau^* < \infty \mid X_0 = x \} \sim C e^{-\frac{m^+_0}{\delta\eta_0} x}, x \to \infty \), and we obtain \(C \) in Theorem 6.2.

Theorem 6.2. Under Assumption 6.1, if the claim sizes follow an exponential distribution and the initial intensity follows the stationary distribution under \(\mathbb{P} \), i.e. \(\tilde{Z} \sim \exp(\gamma) \) and \(\tilde{\lambda} \sim \tilde{\Pi} \), then, the generalised Cramér–Lundberg approximation is given by

\[
P \{ \tau^* < \infty \mid X_0 = x \} \sim C e^{-\frac{m^+_0}{\delta\eta_0} x}, x \to \infty,
\]

where

\[
C = \frac{\frac{\gamma - v_0^+}{\gamma \mathbb{E} \left[e^{-\frac{m^+_0}{\delta\eta_0} x} \right]} - \gamma \mathbb{E} \left[e^{-\frac{m^+_0}{\delta\eta_0} x} \mid X_0 = 0 \right]}{\frac{\gamma - v_0^+}{\gamma \mathbb{E} \left[e^{-\frac{m^+_0}{\delta\eta_0} x} \right]} - \mathbb{E} \left[e^{-\frac{m^+_0}{\delta\eta_0} x} \mid X_0 = 0 \right]}. \tag{23}
\]

Proof. Use the new set of parameters under \(\mathbb{P} \) given by Theorem 6.1, and rewrite (21) as

\[
-\delta (\tilde{\lambda} - a) \frac{\partial \tilde{f}}{\partial \tilde{x}} + \tilde{c} \frac{\partial \tilde{f}}{\partial \lambda} + \tilde{\lambda} \left(\int_0^\infty \int_0^x \tilde{f} (x - z, \tilde{\lambda} + u) d\tilde{Z}(z) d\tilde{G}(u) \right) + \mathbb{E} \left[e^{-\frac{m^+_0}{\delta\eta_0} \tilde{x}} \mid \tilde{Z}(x) - \tilde{f} \right] \tilde{P} \left(\int_0^\infty \tilde{f} (x, \tilde{\lambda} + u) d\tilde{H}(u) - \tilde{f} \right) = 0.
\]

Remark 6.1. If \(Z \sim \exp(\gamma) \), then, the expression of the ruin probability (15) can be greatly simplified, as \(\Psi(x) \) is a constant, i.e.

\[
\Psi(x) = \frac{e^{-\gamma x} e^{\gamma x}}{\int_0^\infty e^{\gamma z} e^{-\gamma z} dz} = \frac{\gamma - v_0^+}{\gamma}.
\]

6.2. Generalised Cramér–Lundberg approximation for exponentially distributed claims

Based on Theorem 6.1, if \(Z \sim \exp(\gamma) \) and the initial intensity follows the stationary distribution under \(\mathbb{P} \), i.e. \(\tilde{\lambda} \sim \tilde{\Pi} \), then, the ruin probability is given by

\[
P \{ \tau^* < \infty \mid X_0 = x \} = \frac{\gamma - v_0^+}{\gamma \mathbb{E} \left[e^{-\frac{m^+_0}{\delta\eta_0} x} \right]} e^{-\frac{m^+_0}{\delta\eta_0} x} \mathbb{E} \left[e^{-\frac{m^+_0}{\delta\eta_0} x} \mid X_0 = x \right] e^{-\frac{m^+_0}{\delta\eta_0} x} \mathbb{E} \left[e^{-\frac{m^+_0}{\delta\eta_0} x} \mid X_0 = x \right]. \tag{22}
\]
we have
\[L \left\{ \frac{\partial f(x, \tilde{\lambda})}{\partial x} \right\} = w f(w, \tilde{\lambda}) - \tilde{f}(0, \tilde{\lambda}), \]
\[L \left\{ \int_0^x \overline{f}(x - z, \tilde{\lambda} + u) \overline{y} e^{-\gamma z} \, dz \right\} = \frac{\overline{y}}{\overline{y} + w} f(w, \tilde{\lambda} + u), \]
\[L \left\{ e^{-\tilde{\gamma} u} \right\} = \frac{1}{\overline{y} + w}. \]

then,
\[-\delta (\lambda - \tilde{\lambda}) \frac{\partial f(w, \tilde{\lambda})}{\partial \lambda} + \tilde{c} \left(w \frac{\partial f(w, \tilde{\lambda})}{\partial \lambda} - \tilde{f}(0, \tilde{\lambda}) \right) \]
\[+ \lambda \left(\frac{\overline{y}}{\overline{y} + w} \int_0^\infty \tilde{f}(w, \tilde{\lambda} + u) d\tilde{G}(u) \right) + \frac{\gamma - v^\epsilon_0}{\gamma} \frac{e^{-\gamma_0 \tilde{\gamma} t}}{g(-\gamma_0) \gamma + w} \tilde{f}(w, \tilde{\lambda}) \]
\[+ \tilde{b} \left(\int_0^\infty \tilde{f}(w, \tilde{\lambda} + u) d\tilde{G}(u) - \tilde{f}(w, \tilde{\lambda}) \right) = 0, \]

or,
\[\tilde{A} f(w, \tilde{\lambda}) + \tilde{c} \left(w \frac{\partial f(w, \tilde{\lambda})}{\partial \lambda} - \tilde{f}(0, \tilde{\lambda}) \right) \]
\[+ \lambda \left(\frac{\overline{y}}{\overline{y} + w} \int_0^\infty \tilde{f}(w, \tilde{\lambda} + u) d\tilde{G}(u) \right) + \frac{\gamma - v^\epsilon_0}{\gamma} \frac{e^{-\gamma_0 \tilde{\gamma} t}}{g(-\gamma_0) \gamma + w} \tilde{f}(w, \tilde{\lambda}) \]
\[+ \tilde{b} \left(\int_0^\infty \tilde{f}(w, \tilde{\lambda} + u) d\tilde{G}(u) - \tilde{f}(w, \tilde{\lambda}) \right) = 0. \]

If \(\tilde{\lambda} \sim \Pi \), then,
\[E \left[\tilde{A} f(w, \tilde{\lambda}) + \tilde{c} \left(w \frac{\partial f(w, \tilde{\lambda})}{\partial \lambda} - \tilde{f}(0, \tilde{\lambda}) \right) \right] \]
\[+ \tilde{b} \left(\int_0^\infty \tilde{f}(w, \tilde{\lambda} + u) d\tilde{G}(u) - \tilde{f}(w, \tilde{\lambda}) \right) \]
\[= 0. \]

and
\[\lim_{w \to 0} E \left[\tilde{A} f(w, \tilde{\lambda}) + \tilde{c} \left(w \frac{\partial f(w, \tilde{\lambda})}{\partial \lambda} - \tilde{f}(0, \tilde{\lambda}) \right) \right] \]
\[= 0. \]

Since under Assumption 6.1,
\[\tilde{c} : \lim_{x \to 0} \tilde{f}(x, \tilde{\lambda}) = \lim_{w \to 0} w \tilde{f}(w, \tilde{\lambda}), \]
\[\lim_{w \to 0} \frac{w}{\overline{y} + w} \int_0^\infty \tilde{f}(w, \tilde{\lambda} + u) d\tilde{G}(u) \]
\[= \int_0^\infty \lim_{w \to 0} \frac{w}{\overline{y} + w} \tilde{f}(w, \tilde{\lambda} + u) d\tilde{G}(u) \]
\[= \int_0^\infty \frac{1}{\overline{y}} \tilde{c} d\tilde{G}(u) = \frac{\tilde{c}}{\overline{y}}. \]

and by Theorem 2.2, we also have
\[E \left[A f(0, \tilde{\lambda}) \right] = 0, \]
\[\tilde{c} \left(C - f(0, \tilde{\lambda}) \right) + \tilde{\lambda} \left(\frac{\tilde{c}}{\overline{y}} + \frac{\gamma - v^\epsilon_0}{\gamma} \frac{e^{-\gamma_0 \tilde{\gamma} t}}{g(-\gamma_0) \gamma} \right) = 0, \]

and
\[\tilde{c} = \frac{\gamma - v^\epsilon_0}{\gamma g(-\gamma_0)}. \]

note that, by definition,
\[E \left[f(0, \tilde{\lambda}) \right] = \frac{\gamma - v^\epsilon_0}{\gamma g(-\gamma_0)} E \left[e^{-\gamma_0 \tilde{\gamma} t} \tilde{f}(0, \tilde{\lambda}) \right] \]
\[\lim_{x \to 0} \frac{P \left[\tau^* < \infty | X_0 = x \right]}{e^{-\nu^\epsilon_0 x}} = E \left[e^{-\gamma_0 \tilde{\gamma} t} \tilde{f}(0, \tilde{\lambda}) \right] \]
\[= E \left[e^{-\gamma_0 \tilde{\gamma} t} \tilde{c} \right]. \]

Remark 6.4. For the Cramér–Lundberg constant (23), by Theorem 2.1 and Corollary 2.1, we can explicitly calculate the terms
\[E[\tilde{\lambda}] = \frac{\mu v^\epsilon_0 \tilde{b} + \tilde{a} \tilde{\delta}}{\delta - \mu v^\epsilon_0}, \]
\[E[e^{-\gamma_0 \tilde{\gamma} t}] = \exp \left(\int_{-\gamma_0 \tilde{\gamma} t}^{0} \frac{\tilde{a} \tilde{b} u + \tilde{c}}{\tilde{b} u + \tilde{c}} \, du \right), \]
\[E \left[\lambda e^{-\gamma_0 \tilde{\gamma} t} \right] = -\frac{d}{dm} \frac{E[e^{-m \tilde{\gamma} t}]}{m - v^\epsilon_0}, \]
\[= \frac{\tilde{a} \tilde{b} m_0 + \tilde{c} \tilde{b} \tilde{c}}{\delta m_0 + \tilde{b} (m_0^\epsilon - 1)} \times \exp \left(-\int_{m_0^\epsilon}^{0} \frac{\tilde{a} \tilde{b} u + \tilde{c} \tilde{b} \tilde{c}}{\delta \tilde{b} u + \tilde{c} \tilde{b} \tilde{c}} \, du \right). \]

Also, by Theorem 6.3 for the net profit condition under the measure \(\mathbb{P} \), we have
\[\frac{1}{\overline{y}} E[\tilde{\lambda}] - \tilde{c} > 0. \]

6.3. Net profit condition under \(\mathbb{P} \) and \(\mathbb{P} \)

Theorem 6.3. If the net profit condition and the stationarity condition both hold under \(\mathbb{P} \), i.e.
\[c > \frac{\mu v^\epsilon_0 \tilde{b} + \tilde{a} \tilde{\delta}}{\delta - \mu v^\epsilon_0}, \quad \delta > \mu v^\epsilon_0, \]

and the stationarity condition also holds under the new measure \(\mathbb{P} \), i.e.
\[\delta > \mu v^\epsilon_0, \text{ then, under } \mathbb{P}, \text{ we have} \]
\[\frac{\mu v^\epsilon_0 \tilde{b} + \tilde{a} \tilde{\delta}}{\delta - \mu v^\epsilon_0} > \tilde{c}, \]

and the ruin becomes certain (almost surely), i.e.
\[\mathbb{P} \left[\tau^* < \infty \right] = \lim_{t \to \infty} \mathbb{P} \left[\tau^* \leq t \right] = 1. \]
Proof. By the transformation between two measures from Theorem 6.1, we have

$$\mu_{12} = \mathbb{E}[Z] = \int_0^\infty z d\tilde{Z}(z) = \int_0^\infty \tilde{z} e^{\tilde{z}^2} d\tilde{Z}(z) = \int_0^\infty \frac{e^{v_0^+ z} d\tilde{Z}(z)}{\tilde{z}(-v_0^+)}.$$

Change variable $y = \frac{1}{1+\delta n_0^+} u$, then,

$$\mu_{12} = \mathbb{E}[Y^{(1)}] = \int_0^\infty \frac{e^{y} h(u)}{1 + \delta n_0^+} du = \frac{(1 + \delta n_0^+) \tilde{h}(n_0^+)}{1 + \delta n_0^+} \int_0^\infty h(-\eta_0^+) \eta e^{\eta^2} dH(y);$$

$$\mu_{12} = \mathbb{E}[Y^{(2)}] = \int_0^\infty \tilde{y} e^{\tilde{y}^2} dG(y) = \tilde{z}(-v_0^+) \eta e^{\eta^2} (-n_0^+).$$

The mean of self-excited jump sizes under \tilde{P} is greater than the one under P, since

$$\mu_{12} > \tilde{g}(-n_0^+) = \int_0^\infty \eta e^{\eta^2} dG(y) > \int_0^\infty y dG(y) = \mu_{12}.$$

Hence,

$$\frac{\mu_{12} \tilde{\rho} + \tilde{g}(-n_0^+)}{\delta - \mu_{12} \tilde{\mu}_{12}} = \frac{\rho \int_0^\infty \eta e^{\eta^2} dH(y) + \alpha \delta + \delta n_0^+}{\delta - \tilde{z}(-v_0^+) \eta e^{\eta^2} (-n_0^+)} \tilde{z}(-v_0^+);$$

$$\tilde{g}(-n_0^+) = \int_0^\infty \eta e^{\eta^2} dZ(z);$$

$$\tilde{z}(-v_0^+) \eta e^{\eta^2} (-n_0^+) = 1 + \delta n_0^+;$$

$$\tilde{z}(-v_0^+) \eta e^{\eta^2} (-n_0^+) = \tilde{h}(n_0^+) \eta e^{\eta^2} (-n_0^+) \frac{\delta - \tilde{z}(-v_0^+) \eta e^{\eta^2} (-n_0^+)}{\rho + \alpha \delta.}$$

From the generalised Lundberg’s fundamental equation, we have

$$1 + \delta n_0^+ = \left(-\alpha \delta n_0^+ + \rho \left(1 - \tilde{h}(n_0^+) \right) \right) \frac{\tilde{g}(-n_0^+)}{c} a\delta + \rho \frac{d\tilde{h}(n_0^+)}{dn_0^+} \frac{\tilde{g}(-n_0^+)}{c}.$$

If the net profit condition and stationarity condition both hold under P, the right-hand-side function is a strictly increasing and convex function of n_0^+ as obviously a convex function of a function convex function is still a convex function; it was also proved formally in the proof of Lemma 4.1. Hence, as shown in Fig. 4, at the point n_0^+ the slope of the left-hand-side function is greater than the slope of the right-hand-side function, i.e.

$$\frac{d}{d\eta} \left(1 + \delta \eta \right)_{\eta=n_0^+} < \left(-\alpha \delta n_0^+ + \rho \left(1 - \tilde{h}(n_0^+) \right) \right) \frac{\tilde{g}(-n_0^+)}{c}.$$

![Net Profit Condition via the Lundberg Fundamental Equation](image)

Remark 6.5. If the net profit condition and the stationarity condition both hold under P, but the stationarity condition does not hold under \tilde{P}, then, $\delta < \mu_{12}$, then the intensity λ_0 under \tilde{P} will increase arbitrarily. It does not mean the measures are not equivalent, as we are only considering them till a fixed time T anyway in the optional stopping theorem; also, ruin does occur with probability one and pretty fast (which will manifest itself in the simulation).
In particular, for the special case of shot noise intensity, interestingly, we find a conjugate relationship between the expected loss rates under the two measures.

Corollary 6.1. For the shot noise case with $H \sim \text{Exp}(\alpha)$ and $Z \sim \text{Exp}(\gamma)$, if the net profit condition holds under the original measure \mathbb{P}, i.e.

$$c > \frac{\rho}{\delta \alpha \gamma},$$

then, under the new measure \mathbb{P}, we have

$$\zeta < \frac{\tilde{\rho}}{\delta \alpha \gamma}.$$

and

$$\frac{\rho}{\delta \alpha \gamma} \frac{\tilde{\rho}}{\delta \alpha \gamma} = c^2. \quad (27)$$

Proof. In particular, for the shot noise case with jump-size distributions $H \sim \text{Exp}(\alpha)$ and $Z \sim \text{Exp}(\gamma)$ (by setting $a = 0$ and $\tilde{g}(\cdot) = 1$ in Theorem 6.3), we have the parameters transformed by

- $c \rightarrow \tilde{c} = c$,
- $\delta \rightarrow \delta = \delta$,
- $\rho \gamma \rightarrow \tilde{\rho} = \frac{\alpha}{\alpha - \eta_0} \rho$,
- $\gamma \gamma \rightarrow \tilde{\gamma} = \gamma - \gamma^*_0$,
- $\alpha \alpha \rightarrow \tilde{\alpha} = \frac{\alpha - \eta_0}{1 + \delta \eta_0}$

where the constants are restricted by the generalised Lundberg's fundamental equation

$$\begin{align*}
\delta \eta_0 + \frac{\gamma}{\gamma - \gamma^*_0} - 1 = \frac{c}{\delta \alpha \gamma} \tilde{c}.
\end{align*}$$

The net profit condition holds under \mathbb{P}, i.e. $c > \frac{\rho}{\delta \alpha \gamma}$, but under \mathbb{P} we have $\frac{\tilde{\rho}}{\delta \alpha \gamma} > \tilde{c}$, since

$$\frac{\tilde{\rho}}{\delta \alpha \gamma} = \frac{\alpha - \eta_0}{1 + \delta \eta_0} \frac{\gamma}{\gamma - \gamma^*_0} \tilde{\gamma}$$

$$= \frac{\alpha \rho}{\delta \alpha - \eta_0} \left(1 + \delta \eta_0^* \right) \frac{\gamma}{\gamma - \gamma^*_0} \tilde{\gamma}$$

$$= \frac{\alpha \rho}{\delta \alpha \gamma} \left(1 + \delta \eta_0^* \right) \frac{\gamma}{\gamma - \gamma^*_0}$$

$$= \frac{\delta \alpha \gamma}{\rho} c^2 \left(\frac{\gamma}{\gamma - \gamma^*_0} \right)$$

$$> \frac{\delta \alpha \gamma}{\rho} c \frac{\gamma}{\gamma - \gamma^*_0} = \tilde{c}.$$

Hence, we also find (27). \qed

7. Example: jumps with exponential distributions

To represent the previous results in explicit forms, in this section, we further assume the externally excited and self-excited jumps in the intensity process λ_t and the claim sizes all follow exponential distributions, i.e. $H \sim \text{Exp}(\alpha)$, $G \sim \text{Exp}(\beta)$ and $Z \sim \text{Exp}(\gamma)$, with the density functions

$$h(y) = \alpha e^{-\alpha y}, \quad g(y) = \beta e^{-\beta y},$$

$$z(z) = \gamma e^{-\gamma z}, \quad y, z; \alpha, \beta, \gamma > 0,$$

and the Laplace transforms

$$\tilde{h}(u) = \frac{\alpha}{\alpha + u}, \quad \tilde{g}(u) = \frac{\beta}{\beta + u}, \quad \tilde{z}(u) = \frac{\gamma}{\gamma + u}.$$

7.1. Generalised Lundberg's fundamental equation

We discuss the general case $0 \leq r < r^*$ and the special case $r = 0$ for the generalised Lundberg's fundamental equation (from Theorem 4.1) respectively.

Case $0 \leq r < r^*$. By Theorem 4.1, we have the generalised Lundberg's fundamental equation for $0 \leq r < r^*$,

$$\begin{align*}
\begin{cases}
\gamma & = 1 + \delta \eta_0 \\
\gamma - \gamma^*_0 & = 1 + \delta \eta_0 \\
\gamma - \gamma^*_0 & > 0
\end{cases}
\end{align*}$$

or, rewrite w.r.t. η_0, as

$$1 + \delta \eta_0 = \frac{c \gamma \beta (\alpha - \eta_0)}{\alpha \gamma (\delta \beta - 1)}, \quad \delta \beta > 1.$$

Solving (9) of Lemma 4.2 and substituting the unique negative solution $\eta^* = \frac{\delta \beta - 1}{\delta \beta}$ into (8), we obtain the constant r^*,

$$r^* = (\delta \beta - 1) \left(a + \frac{\rho}{\delta (\alpha - \beta) + 1} \right).$$

Case $r = 0$. Set $r \rightarrow 0$, we have the generalised Lundberg's fundamental equation for $r = 0$,

$$\begin{align*}
\begin{cases}
\gamma & = 1 + \delta \eta_0 \\
\gamma - \gamma^*_0 & = 1 + \delta \eta_0 \\
\gamma - \gamma^*_0 & > 0
\end{cases}
\end{align*}$$

or, rewrite w.r.t. η_0 as

$$1 + \delta \eta_0 = \frac{c \gamma \beta (\alpha - \eta_0)}{\alpha \gamma (\delta \beta - 1)}, \quad \delta \beta > 1.$$

The results of case $r = 0$ here will be used later in Section 7.3 for numerical calculations.
7.2 Ruin probability and generalised Cramér–Lundberg approximation via measure \(\widetilde{P} \)

The Corollary 7.1 is an example of Theorems 6.1 and 6.2 by additionally assuming the exponential distributions.

Corollary 7.1. If \(H \sim \text{Exp}(\alpha), G \sim \text{Exp}(\beta), Z \sim \text{Exp}(\gamma), \alpha \geq \beta, \) the net profit condition holds under \(P, \) and stationarity condition holds under \(P \) and \(\widetilde{P}, \) and the initial intensity follows the stationary distribution under \(\widetilde{P}, \) i.e. \(\widetilde{\lambda} \sim \widetilde{\alpha} + \widetilde{T}_1 + \widetilde{T}_2 \)

\[
\begin{align*}
\widetilde{T}_1 & \sim \text{Gamma} \left(\frac{1}{\delta} \left(\alpha + \frac{\widetilde{\rho}}{\delta(\alpha - \beta) + 1} \right), \frac{\delta \beta - 1}{\delta} \right), \\
\widetilde{T}_2 & \sim \text{Gamma} \left(\frac{\widetilde{\rho}(\alpha - \widetilde{\beta})}{\delta(\alpha - \beta) + 1}, \alpha \right),
\end{align*}
\]

then, we have the ruin probability

\[
P \left\{ \tau^* < \infty ||X_0 = x \right\} = \frac{\gamma - v_0^+ \beta - \eta_0^+}{\gamma} \underbrace{\mathbb{E} \left[e^{m_0^+ \tilde{\lambda}} \right]}_{\mathbb{E}[\tilde{\lambda}] - \mathbb{E}[\tilde{\lambda}]} \times \left[e^{-m_0^+ \tilde{\lambda} \tau^*} \bigg| X_0 = x \right] e^{-x^{-\delta}},
\]

and the generalised Cramér–Lundberg approximation

\[
P \left\{ \tau^* < \infty ||X_0 = x \right\} \sim C e^{-x^{-\delta}}, \quad x \to \infty,
\]

where

\[
C := \frac{\gamma - v_0^+ \beta - \eta_0^+}{\gamma} \mathbb{E} \left[e^{m_0^+ \tilde{\lambda}} \right] \times \left[e^{-m_0^+ \tilde{\lambda} \tau^*} \bigg| X_0 = 0 \right] = \frac{1}{\gamma} \mathbb{E}[\tilde{\lambda}] - \mathbb{E}[\tilde{\lambda}].
\]

The transformation from \(P \) to \(\widetilde{P} \) is given by

- \(a \leadsto \widetilde{a} := (1 + \delta \eta_0^+) a, \)
- \(c \leadsto \widetilde{c} = c, \)
- \(\delta \leadsto \widetilde{\delta} = \delta, \)
- \(\rho \leadsto \widetilde{\rho} := \frac{a}{a - \eta_0^+} \rho, \)
- \(\gamma \leadsto \widetilde{\gamma} := \gamma - v_0^+, \)
- \(\beta \leadsto \widetilde{\beta} := \frac{\beta + \eta_0^+}{1 + \delta \eta_0^+}, \)
- \(\alpha \leadsto \widetilde{\alpha} := \frac{a - \eta_0^+}{1 + \delta \eta_0^+}. \)

Proof. If \(H \sim \text{Exp}(\alpha), G \sim \text{Exp}(\beta), Z \sim \text{Exp}(\gamma), \) by Theorem 2.3 for the case when \(\alpha \geq \beta, \) we have the Laplace transform

\[
\mathbb{E} \left[e^{-m_0^+ \tilde{\lambda}} \right] = e^{-m_0^+ \tilde{\alpha}} \left(\frac{\widetilde{\alpha}}{\alpha + m_0^+} \right) + \frac{\beta - \eta_0^+}{\alpha + m_0^+} \frac{1}{\gamma} \left(\frac{\beta - \eta_0^+}{\delta} \right) \frac{1}{\gamma} \left(\frac{\beta - \eta_0^+}{\delta} \right)
\]

Use Theorems 6.1 and 6.2, the ruin probability and generalised Cramér–Lundberg approximation can be derived immediately.

We only discuss the case when \(\alpha \geq \beta \) for instance. It is similar to derive the corresponding results for other cases when \(\alpha < \beta \) and we omit them here.

Remark 7.1. We can calculate explicitly for the terms in (28) and (29) of Corollary 7.1.

\[
\mathbb{E} \left[e^{m_0^+ \tilde{\lambda}} \right] = e^{m_0^+ \tilde{\alpha}} \left(\frac{\widetilde{\alpha}}{\alpha + m_0^+} \right) \frac{1}{\gamma} \left(\frac{\beta - \eta_0^+}{\delta} \right) \frac{1}{\gamma} \left(\frac{\beta - \eta_0^+}{\delta} \right)
\]

except the term \(\mathbb{E} \left[e^{-m_0^+ \tilde{\lambda} \tau^*} \bigg| X_0 = 0 \right] \sim 1/\tau \). However, this term can be easily estimated by simulation under \(\widetilde{P} \) where ruin becomes certain.

7.3 Numerical example

Now we provide a numerical example of Corollary 7.1 for the case of exponential distribution when \(\alpha \geq \beta, \) with parameters under the original measure \(P \) set by

\((\alpha, \rho; \delta; \alpha, \beta; \gamma; c) = (0.7, 0.5, 3; 2, 1.5, 1; 1.5). \)

It is easy to check that the stationarity and net profit condition hold. Then, we can obtain \((\eta_0^+, v_0^+) = (0.1441, 0.2276) \) (the unique solution of the generalised Lundberg’s fundamental equation given in Case \(r = 0 \) of Section 7.1), and \(m_0^+ = 0.1066 \) (defined in Theorem 6.1). By Corollary 7.1, the parameters under the new measure \(\widetilde{P} \) are given by

\((\widetilde{a}, \widetilde{\rho}, \widetilde{\delta}, \widetilde{\alpha}, \widetilde{\beta}, \widetilde{\gamma}; \widetilde{c}) = (1.0026, 0.5386, 3; 1.2957, 0.9467, 0.7724; 1.5000). \)

It is also easy to check that under \(\widetilde{P} \) the stationarity condition holds but the net profit condition does not hold, hence ruin is certain i.e. \(\widetilde{P} \{ \tau^* < \infty \} = 1. \) By Remark 7.1, we can explicitly calculate \(\mathbb{E} \left[e^{m_0^+ \tilde{\lambda}} \right] = 1.2019, \mathbb{E} \left[e^{-m_0^+ \tilde{\lambda} \tau^*} \bigg| X_0 = 0 \right] = 1.9374, \) and estimate \(\mathbb{E} \left[e^{-m_0^+ \tilde{\lambda} \tau^*} \bigg| X_0 = 0 \right] \approx 0.8330 \) from a simulation of 10,000 replications under \(\widetilde{P}. \) Therefore, we have \(C \approx 0.5006 \) (defined by (24)), and by (29) the estimated Cramér constant \(C \approx 1.2019 \times 0.5006 = 0.6017 \) with estimated standard error 1.44 \times 10^{-5}, then,

\[
P \left\{ \tau^* < \infty ||X_0 = x \right\} \approx 0.6017 e^{-0.2276x}, \quad x \to \infty.
\]

By (28), the estimated ruin probability \(P \{ \tau^* < \infty ||X_0 = x \} \) and the estimated standard error are also given by Table 2 based on a simulation of 10,000 replications under \(\widetilde{P}. \)

For comparison, the estimated ruin probability \(P \{ \tau^* < \infty ||X_0 = x \} \) and the estimated standard error based on the simulation of 10,000 replications under the original measure \(P \) are given by Table 3, and the ratio of estimated standard errors under the two methods is given by Table 4. We can see that the estimated ruin probabilities based on simulations under the two methods are very close. However, by using our method, the estimated standard error has been massively reduced, particularly for a larger \(x, \) as the ratio of the estimated standard errors is increasing rapidly as \(x \) becomes larger.
Table 2
Estimation of ruin probability \(P(\tau^* < \infty | X_0 = x) \) by our method.

<table>
<thead>
<tr>
<th>x</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
<th>22</th>
<th>24</th>
<th>26</th>
<th>28</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P(\tau^* < \infty</td>
<td>X_0 = x))</td>
<td>0.2576</td>
<td>0.1609</td>
<td>0.1013</td>
<td>0.0640</td>
<td>0.0405</td>
<td>0.0256</td>
<td>0.0162</td>
<td>0.0103</td>
<td>0.0065</td>
<td>0.0041</td>
<td>0.0026</td>
<td>0.0017</td>
<td>0.0011</td>
</tr>
<tr>
<td>Standard error ((\times 10^{-4}))</td>
<td>4.01</td>
<td>2.58</td>
<td>1.68</td>
<td>1.07</td>
<td>0.71</td>
<td>0.45</td>
<td>0.28</td>
<td>0.18</td>
<td>0.11</td>
<td>0.07</td>
<td>0.05</td>
<td>0.03</td>
<td>0.02</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Table 3
Estimation of ruin probability \(P(\tau^* < \infty | X_0 = x) \) by direct simulation under the original measure \(\mathbb{P} \).

<table>
<thead>
<tr>
<th>x</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
<th>22</th>
<th>24</th>
<th>26</th>
<th>28</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P(\tau^* < \infty</td>
<td>X_0 = x))</td>
<td>0.2572</td>
<td>0.1612</td>
<td>0.1016</td>
<td>0.0642</td>
<td>0.0405</td>
<td>0.0258</td>
<td>0.0164</td>
<td>0.0103</td>
<td>0.0065</td>
<td>0.0041</td>
<td>0.0026</td>
<td>0.0017</td>
<td>0.0011</td>
</tr>
<tr>
<td>Standard error ((\times 10^{-4}))</td>
<td>43.85</td>
<td>36.79</td>
<td>30.53</td>
<td>24.51</td>
<td>19.74</td>
<td>15.73</td>
<td>12.89</td>
<td>10.38</td>
<td>8.10</td>
<td>6.54</td>
<td>4.89</td>
<td>3.87</td>
<td>3.16</td>
<td>2.45</td>
</tr>
</tbody>
</table>

Table 4
Ratio of the estimated standard errors of ruin probability \(P(\tau^* < \infty | X_0 = x) \) under the two methods.

<table>
<thead>
<tr>
<th>x</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
<th>22</th>
<th>24</th>
<th>26</th>
<th>28</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratio of errors</td>
<td>10.94</td>
<td>14.25</td>
<td>18.12</td>
<td>22.80</td>
<td>27.88</td>
<td>35.20</td>
<td>45.62</td>
<td>58.02</td>
<td>72.36</td>
<td>89.81</td>
<td>106.90</td>
<td>131.83</td>
<td>169.64</td>
<td>206.95</td>
</tr>
</tbody>
</table>

Moreover, the computer time needed for each replication is shorter because ruin is certain. Under \(\mathbb{P} \), the average time to ruin and hence the average replication length is approximately 3, all replications had ended before time 100 and 97.5% before time 20, while under \(\mathbb{P} \) we had to run replications for longer than that as we had to extend the time horizon to 100 for the probability of ruin only to stabilise.

Acknowledgment

We would like to thank an anonymous referee for various helpful suggestions.

References

